Given
sinx+sin2x=1
⇒sinx=1−sin2x
⇒sinx=cos2x
⇒sin2x=cos4x
⇒1−cos2x=cos4x
⇒cos2x+cos4x=1......[1]
Again
sinx+sin2x=1
⇒sinxsin2x+sin2xsin2x=1sin2x
⇒cscx+1=csc2x
⇒cscx=csc2x−1
⇒cscx=cot2x
⇒csc2x=cot4x
⇒1+cot2x=cot4x
⇒cot4x−cot2x=1........[2]
Adding [1] and [2]
we get
cos2x+cos4x+cot4x−cot2x=1+1=2
sinx+sin2x=1
⇒sinx=1−sin2x
⇒sinx=cos2x
⇒sin2x=cos4x
⇒1−cos2x=cos4x
⇒cos2x+cos4x=1......[1]
Again
sinx+sin2x=1
⇒sinxsin2x+sin2xsin2x=1sin2x
⇒cscx+1=csc2x
⇒cscx=csc2x−1
⇒cscx=cot2x
⇒csc2x=cot4x
⇒1+cot2x=cot4x
⇒cot4x−cot2x=1........[2]
Adding [1] and [2]
we get
cos2x+cos4x+cot4x−cot2x=1+1=2
No comments:
Post a Comment